## Cambridge IGCSE ${ }^{\text {Tw }}$ (9-1)

## CHEMISTRY

0971/21
Paper 2 Multiple Choice (Extended)
May/June 2020
45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet<br>Soft clean eraser<br>Soft pencil (type B or HB is recommended)

## INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.


## INFORMATION

- The total mark for this paper is 40 .
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 A mixture of ice and water is left to stand and the ice melts.
Which row describes what happens as the ice is melting?

|  | temperature of mixture | energy changes |
| :---: | :---: | :--- |
| A | increases | average kinetic energy of particles increases |
| B | increases | energy is used to overcome attractive forces |
| C | stays the same | average kinetic energy of particles increases |
| D | stays the same | energy is used to overcome attractive forces |

2 Which piece of apparatus should be used to measure exactly $21.4 \mathrm{~cm}^{3}$ of water?
A $25 \mathrm{~cm}^{3}$ beaker
B $25 \mathrm{~cm}^{3}$ pipette
C $50 \mathrm{~cm}^{3}$ burette
D $50 \mathrm{~cm}^{3}$ measuring cylinder

3 The chromatogram for an unknown dye is shown.


What is the $R_{\mathrm{f}}$ value of the dye?
A 0.60
B 0.64
C 0.75
D 0.82

4 The atomic number and nucleon number of a potassium atom are shown.

|  | potassium atom |
| :---: | :---: |
| atomic number | 19 |
| nucleon number | 39 |

How many protons, neutrons and electrons are in a potassium ion, $\mathrm{K}^{+}$?

|  | protons | neutrons | electrons |
| :---: | :---: | :---: | :---: |
| A | 19 | 20 | 18 |
| B | 19 | 20 | 20 |
| C | 20 | 19 | 18 |
| D | 20 | 19 | 19 |

5 The electronic structures of two atoms, P and Q, are shown.


P and Q combine together to form a compound.
What is the type of bonding in the compound and what is the formula of the compound?

|  | type of bonding | formula |
| :---: | :---: | :---: |
| A | ionic | PQ |
| B | ionic | $\mathrm{PQ}_{2}$ |
| C | covalent | $\mathrm{PQ}_{2}$ |
| D | covalent | PQ |

6 Which row contains a description of metallic bonding and a property that is explained by reference to metallic bonding?

|  | description of <br> metallic bonding | property explained by <br> metallic bonding |
| :---: | :---: | :---: |
| A | a lattice of negative ions <br> in a sea of electrons | a metal will react with an <br> acid, producing hydrogen |
| B | a lattice of negative ions <br> in a sea of electrons <br> a lattice of positive ions <br> in a sea of electrons <br> a piece of a metal can be <br> a lattice of positive ions different shapes <br> in a sea of electrons | a metal will react with an <br> acid, producing hydrogen <br> a piece of a metal can be <br> moulded into different shapes |
| D | moner |  |

7 Which statement explains why methane has a lower boiling point than water?
A Methane has weaker covalent bonds than water.
B Methane has weaker attractive forces than water.
C Methane molecules are heavier than water molecules.
D Methane molecules have more bonds than water molecules.

8 A solution of iron(III) sulfate reacts with aqueous sodium hydroxide to form a red-brown precipitate.

What is the balanced equation, including state symbols, for the reaction?
A $\mathrm{FeSO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
B $\mathrm{FeSO}_{4}(\mathrm{I})+2 \mathrm{NaOH}(\mathrm{I}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{I})$
C $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+6 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
D $\quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{I})+6 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{I})$

9 The Haber process is a reversible reaction.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The reaction has a 30\% yield of ammonia.
Which volume of ammonia gas, $\mathrm{NH}_{3}$, measured at room temperature and pressure, is obtained by reacting 0.75 moles of hydrogen with excess nitrogen?
A $3600 \mathrm{~cm}^{3}$
B $5400 \mathrm{~cm}^{3}$
C $12000 \mathrm{~cm}^{3}$
D $18000 \mathrm{~cm}^{3}$

10 Dilute aqueous sodium chloride is electrolysed using platinum electrodes.
What is the half-equation for the reaction at the cathode?
A $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
B $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$
C $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
D $4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$

11 The electrolysis of aqueous copper(II) sulfate, using inert electrodes, is shown.


Which statement about a reaction at an electrode is correct?
A Copper ions gain electrons at the negative electrode.
B Copper ions gain electrons at the positive electrode.
C Hydrogen ions gain electrons at the negative electrode.
D Hydrogen ions gain electrons at the positive electrode.

12 The equation for the complete combustion of methane gas is shown.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Bond energies are shown.

| bond | bond energy <br> in $\mathrm{kJ} / \mathrm{mol}$ |
| :---: | :---: |
| $\mathrm{C}-\mathrm{H}$ | 412 |
| $\mathrm{H}-\mathrm{O}$ | 463 |
| $\mathrm{C}=\mathrm{O}$ | 743 |
| $\mathrm{O}=\mathrm{O}$ | 498 |

What is the overall energy change, in $\mathrm{kJ} / \mathrm{mol}$, for the above reaction?
A -1192
B -694
C +694
D +1192

13 Which statements about hydrogen fuel cells are correct?
1 Water is formed as the only waste product.
2 Both water and carbon dioxide are formed as waste products.
3 The overall reaction is $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$.
4 The overall reaction is endothermic.
A 1 and 3
B 1 and 4
C 2 and 3
D 2 and 4

14 Which diagram represents a chemical change?
A





15 The rate of reaction between calcium carbonate chips and hydrochloric acid is studied by collecting the volume of gas released in one minute at different temperatures.

A graph of rate of reaction against temperature is shown.


Which statement fully explains why increasing the temperature has this effect on the rate?
A The kinetic energy of the particles increases so the collisions are harder.
B The number of collisions between particles increases.
C The activation energy needed for the particles to react is reduced.
D There are more frequent collisions between particles with enough energy to react.

16 The equation shows the equilibrium between dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, and nitrogen dioxide, $\mathrm{NO}_{2}$.

The colours of the reactant and product are also shown.

$$
\underset{\text { brown }}{\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})} \text { colourless } \rightleftharpoons \underset{2}{2 \mathrm{NO}_{2}(\mathrm{~g})}
$$

The forward reaction is endothermic.
Which statement is not correct?
A At equilibrium the concentrations of the reactant and the product are constant.
B At equilibrium the rate of the forward reaction is equal to the rate of the reverse reaction.
C When the pressure is increased a darker brown colour is seen.
D When the temperature is increased a darker brown colour is seen.

17 The equations for two reactions of iodide ions are shown.

$$
\begin{array}{ll}
\text { reaction } 1 & 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
\text { reaction 2 } & \mathrm{I}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{AgI}(\mathrm{~s})
\end{array}
$$

Which statement is correct?
A Both reactions are redox reactions.
B Neither reaction is a redox reaction.
C Only reaction 1 is a redox reaction.
D Only reaction 2 is a redox reaction.

18 The graph shows how the pH of a solution changes as an acid is added to an alkali.

$$
\text { acid }+ \text { alkali } \rightarrow \text { salt }+ \text { water }
$$

Which letter represents the area of the graph where both acid and salt are present?


19 Which statement describes a weak acid?
A It is a proton acceptor and is fully ionised in aqueous solution.
B It is a proton acceptor and is partially ionised in aqueous solution.
C It is a proton donor and is fully ionised in aqueous solution.
D It is a proton donor and is partially ionised in aqueous solution.

20 The apparatus shown is used to prepare aqueous copper(II) sulfate.


What are $X$ and $Y$ ?

|  | X | Y |
| :---: | :---: | :---: |
| A | copper | aqueous iron(II) sulfate |
| B | copper(II) chloride | dilute sulfuric acid |
| C | copper(II) oxide | dilute sulfuric acid |
| D | sulfur | aqueous copper(II) chloride |

21 Lead(II) sulfate is an insoluble salt.
Which method is suitable for obtaining solid lead(II) sulfate?
A Mix aqueous lead(II) nitrate and aqueous potassium sulfate, heat to evaporate all of the water, collect the solid and then wash and dry it.

B Mix aqueous lead(II) nitrate and aqueous potassium sulfate, filter, collect the filtrate, crystallise, then wash and dry the crystals.

C Mix aqueous lead(II) nitrate and dilute sulfuric acid, filter, then wash and dry the residue.
D Titrate aqueous lead(II) hydroxide with dilute sulfuric acid, crystallise, then wash and dry the crystals.

22 A Group I metal (lithium, sodium or potassium) is reacted with a Group VII element (chlorine, bromine or iodine).

Which compound is formed when the Group I metal of highest density reacts with the Group VII element of lowest density?

A lithium chloride
B potassium chloride
C potassium iodide
D lithium iodide

23 The properties of the element titanium, Ti, can be predicted from its position in the Periodic Table. Which row identifies the properties of titanium?

|  | can be used <br> as a catalyst | conducts electricity <br> when solid | has low density | forms coloured <br> compounds |
| :---: | :---: | :---: | :---: | :---: |
| A | $\checkmark$ | $\checkmark$ | $\checkmark$ | $x$ |
| B | $\checkmark$ | $\checkmark$ | $x$ | $\checkmark$ |
| C | $\checkmark$ | $x$ | $\checkmark$ | $\checkmark$ |
| D | $x$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

24 A balloon is filled with helium. Helium is a noble gas and makes the balloon rise up in the air.
The density of air is $1.23 \mathrm{~g} / \mathrm{dm}^{3}$.
Which gas is helium?

|  | density in $\mathrm{g} / \mathrm{dm}^{3}$ | reaction with oxygen |
| :---: | :---: | :---: |
| A | 0.0899 | burns rapidly |
| B | 0.179 | does not react with oxygen |
| C | 1.78 | does not react with oxygen |
| D | 3.75 | does not react with oxygen |

25 Which property is shown by all metals?
A They are extracted from their ores by heating with carbon.
B They conduct electricity.
C They form acidic oxides.
D They react with hydrochloric acid to form hydrogen.

26 Sodium nitrate is a white crystalline solid that decomposes on heating.


Which row describes the decomposition products formed when sodium nitrate is heated strongly?

|  | solid products | gaseous products |
| :---: | :---: | :---: |
| A | sodium nitrite | $\mathrm{NO}_{2}$ and $\mathrm{O}_{2}$ |
| B | sodium nitrite | $\mathrm{O}_{2}$ only |
| C | sodium oxide | $\mathrm{NO}_{2}$ and $\mathrm{O}_{2}$ |
| D | sodium oxide | $\mathrm{O}_{2}$ only |

27 Molten iron from the blast furnace contains impurities.
The process of turning the impure iron into steel involves blowing oxygen into the molten iron and adding calcium oxide.

What are the reasons for blowing in oxygen and adding calcium oxide?

|  | blowing in oxygen | adding calcium oxide |
| :---: | :---: | :---: |
| A | carbon is removed by reacting with oxygen | reacts with acidic impurities making slag |
| B | carbon is removed by reacting with oxygen | reacts with slag and so removes it |
| C | iron reacts with the oxygen | reacts with acidic impurities making slag |
| D | iron reacts with the oxygen | reacts with slag and so removes it |

28 Element Y reacts with copper(II) oxide to form copper.
Element Y will not react with zinc oxide. Copper has no reaction with zinc oxide.
What is the order of reactivity of these three elements, most reactive first?
A $\mathrm{Cu} \rightarrow \mathrm{Y} \rightarrow \mathrm{Zn}$
B $\mathrm{Cu} \rightarrow \mathrm{Zn} \rightarrow \mathrm{Y}$
C $\mathrm{Zn} \rightarrow \mathrm{Cu} \rightarrow \mathrm{Y}$
D $\quad \mathrm{Zn} \rightarrow \mathrm{Y} \rightarrow \mathrm{Cu}$

29 Which statement shows that a liquid is pure water?
A It boils at $100^{\circ} \mathrm{C}$.
B It has a pH value of 7 .
C It turns blue cobalt(II) chloride pink.
D It turns white copper(II) sulfate blue.

30 Which process removes carbon dioxide from the atmosphere?
A combustion
B decomposition
C photosynthesis
D respiration

31 Ammonia is manufactured by the Haber process.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What are the conditions used in the Haber process?

|  | temperature <br> $/{ }^{\circ} \mathrm{C}$ | pressure <br> $/$ atm |
| :---: | :---: | :---: |
| A | 400 | 100 |
| B | 400 | 300 |
| C | 20 | 300 |
| D | 20 | 100 |

32 Coating iron helps to prevent rusting.
Which coating will continue to protect the iron even when the coating is damaged?
A copper
B paint
C plastic
D zinc

33 A student suggests three uses of calcium carbonate (limestone).
1 manufacture of cement
2 manufacture of iron
3 treating alkaline soils
Which suggestions are correct?
A 1 and 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3

34 The Contact process is used to manufacture concentrated sulfuric acid and consists of four steps.
Which step involves a catalyst?
A production of sulfur dioxide gas
B production of sulfur trioxide gas
C production of oleum
D production of concentrated sulfuric acid

35 Which row about the production of ethanol by fermentation is correct?

|  | raw materials | energy requirement | rate of reaction |
| :---: | :---: | :---: | :---: |
| A | non-renewable | high | slow |
| B | renewable | low | slow |
| C | non-renewable | low | fast |
| D | renewable | high | fast |

36 Which statement about homologous series is correct?
A Members of a homologous series have the same structural formula.
B Members of a homologous series all have similar chemical properties.
C Members of a homologous series all have similar physical properties.
D Members of all homologous series are hydrocarbons.

37 Increasing the number of atoms in one molecule of a hydrocarbon increases the amount of energy released when it burns.

What is the correct order?

|  | less energy <br> released |  |  |
| :---: | :---: | :---: | :---: |
| more energy <br> released |  |  |  |
| A | ethene | ethane | methane |
| B | ethene | methane | ethane |
| C | methane | ethane | ethene |
| D | methane | ethene | ethane |

38 Some properties of an organic compound J are listed.

- It is a liquid at room temperature.
- It is soluble in water.
- A solution of J reacts with calcium carbonate to form carbon dioxide.
- A solution of J has a pH of 3 .

In which homologous series does J belong?
A alkane
B alkene
C alcohol
D carboxylic acid

39 Ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, reacts with chlorine in a substitution reaction.
What are the products of this reaction?
A chloroethane and hydrogen
B chloroethane and hydrogen chloride
C chloroethene and hydrogen
D chloroethene and hydrogen chloride

40 Which polymers or types of polymer are synthetic?
1 carbohydrates
2 nylon
3 proteins
4 Terylene
A 1 and 3
B 1 and 4
C 2 and 3
D 2 and 4

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.
The Periodic Table of Elements


| $\begin{gathered} 57 \\ \substack{\text { Lantanum } \\ \text { cant } \\ 139} \end{gathered}$ | $\begin{gathered} 58 \\ \mathrm{Ce} \\ \substack{\text { cerium } \\ 140 \\ \text { an }} \end{gathered}$ | $\begin{gathered} 59 \\ \text { prasodymium } \\ \hline \end{gathered}$ | $\begin{gathered} \text { 60 } \\ \begin{array}{c} \text { nd } \\ \text { neosmmium } \\ 144 \end{array} \end{gathered}$ | $\stackrel{61}{\substack{\text { Pm } \\ \text { romentium }}}$ | $\begin{gathered} 62 \\ \mathrm{Sm}_{\substack{\text { samaium } \\ 150}} \end{gathered}$ | $\begin{gathered} 63 \\ \substack{64 \\ \text { europium } \\ 152} \end{gathered}$ |  | $\begin{gathered} 65 \\ \hline \begin{array}{c} \text { Tetbum } \\ \text { terium } \\ 159 \end{array} \end{gathered}$ | $\begin{gathered} 66 \\ \text { Dy } \\ \text { dyyposum } \end{gathered}$ | $\begin{gathered} 67 \\ \substack{67 \\ \text { nolnium } \\ 165} \end{gathered}$ | $\begin{gathered} 68 \\ \text { Er } \begin{array}{c} \text { erbium } \\ 167 \end{array} \end{gathered}$ | $\begin{gathered} 69 \\ \begin{array}{c} \text { tutum } \\ \text { thum } \\ 169 \end{array} \end{gathered}$ | $\begin{gathered} 70 \\ \mathrm{Yb} \\ \substack{\text { ytebibium } \\ 173} \end{gathered}$ | $\begin{gathered} 71 \\ \mathrm{~L}^{\text {Lutetium }} \\ 175 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | ${ }^{98}$ | 99 | 100 | 101 | 102 | 103 |
| Ac actirium | $\begin{gathered} \text { Tht } \\ \substack{\text { thorium } \\ 232} \end{gathered}$ | $\begin{array}{\|c\|} \mathrm{Pa} \\ \text { potacatium } \\ 231 \end{array}$ | $\begin{gathered} \text { uratium } \\ \text { unc } \\ 238 \end{gathered}$ | $\underset{\text { neptunium }}{\mathrm{Np}}$ | Pu pluonium | Am ameicium | $\mathrm{Cm}$ curium | $\underset{\text { berkelium }}{\mathrm{Bk}}$ | $\underset{\text { calliforium }}{\mathrm{Cf}}$ | $\underset{\text { einsterium }}{\text { Es }}$ | Fm fermium | $\underset{\text { mendedevium }}{\text { Md }}$ | No nobelium | $\underset{\text { awencoum }}{\mathrm{Lr}}$ |

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

